Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
biorxiv; 2024.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2024.03.01.582987

RESUMEN

Several effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed and implemented in the population. However, the current production capacity falls short of meeting global demand. Therefore, it is crucial to further develop novel vaccine platforms that can bridge the distribution gap. AVX/COVID-12 is a vector-based vaccine that utilizes the Newcastle Disease virus (NDV) to present the SARS-CoV-2 spike protein to the immune system. This study analyses the antigenicity of the vaccine candidate by examining antibody binding and T-cell activation in individuals infected with SARS-CoV-2 or variants of concern (VOCs), as well as in healthy volunteers who received coronavirus disease 2019 (COVID-19) vaccinations. Our findings indicate that the vaccine effectively binds antibodies and activates T-cells in individuals who received 2 or 3 doses of BNT162b2 or AZ/ChAdOx-1-S vaccines. Furthermore, the stimulation of T-cells from patients and vaccine recipients with AVX/COVID-12 resulted in their proliferation and secretion of interferon-gamma (IFN-{gamma}) in both CD4+ and CD8+ T-cells. In conclusion, the AVX/COVID-12 vectored vaccine candidate demonstrates the ability to stimulate robust cellular responses and is recognized by antibodies primed by the spike protein present in SARS-CoV-2 viruses that infected patients, as well as in the mRNA BNT162b2 and AZ/ChAdOx-1-S vaccines. These results support the inclusion of the AVX/COVID-12 vaccine as a booster in vaccination programs aimed at addressing COVID-19 caused by SARS-CoV-2 and its VOCs.


Asunto(s)
COVID-19 , Síndrome Respiratorio Agudo Grave
2.
medrxiv; 2024.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2024.02.11.24302530

RESUMEN

Background: The urgent need for safe, effective, and economical coronavirus disease 2019 (COVID-19) vaccines, especially for booster campaigns targeting vulnerable populations, prompted the development of the AVX/COVID-12 vaccine candidate. AVX/COVD-12 is based in a Newcastle disease virus La Sota (NDV-LaSota) recombinant viral vector. This vaccine expresses a stabilized version of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), specifically the ancestral Wuhan strain. The study aimed to assess its safety, immunogenicity, and potential efficacy as an anti-COVID-19 booster vaccine. Methods: In a phase II/III clinical trial conducted from November 9, 2022, to September 11, 2023, a total of 4,056 volunteers were enrolled. Participants received an intramuscular booster dose of either AVX/COVID-12 or AZ/ChAdOx-1-S vaccines. Safety, immunogenicity, and potential efficacy were assessed through various measures, including neutralizing antibody titers, interferon (IFN)-γ-producing CD4+ T cells, and CD8+ T cells. The evaluation also involved immunobridging, utilizing the AZ/ChAdOx-1-S vaccine as an active comparator, and monitoring the incidence of COVID-19 cases. Findings: The AVX/COVID-12 vaccine induced neutralizing antibodies against both the ancestral SARS-CoV-2 and the BA.2 and BA.5 Omicron variants. The geometric mean ratio of neutralizing antibody titers between individuals immunized with the AVX/COVID-12 vaccine and those with the AZ/ChAdOx-1-S vaccine at 14 days is 0.96, with a confidence interval (CI) of 0.85-1.06. The outcome aligns with the non-inferiority criterion recommended by the World Health Organization (WHO), indicating a lower limit of the CI greater than or equal to 0.67. Induction of IFN-γ-producing CD8+ T cells at day 14 post-immunization was exclusively observed in the AVX/COVID-12 group. Finally, a trend suggested a potentially lower incidence of COVID-19 cases in AVX/COVID-12 boosted volunteers compared to AZ/ChAdOx-1-S recipients. Conclusion: The AVX/COVID-12 vaccine proved safe, well-tolerated, and immunogenic. AVX/COVID-12 meets the WHO non-inferiority standard compared to AZ/ChAdOx-1-S. These results strongly advocate for AVX/COVID-12 as a viable booster dose, supporting its utilization in the population.


Asunto(s)
Infecciones por Coronavirus , Síndrome Respiratorio Agudo Grave , COVID-19 , Enfermedad de Newcastle
3.
medrxiv; 2024.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2024.02.11.24302594

RESUMEN

BackgroundThe global inequity in coronavirus disease 2019 (COVID-19) vaccine distribution, primarily affecting low- and middle-income countries (LMICs), highlights the urgent need for innovative and cost-effective vaccine technologies to address availability disparities. This is crucial for achieving and sustaining widespread immunity and protecting vulnerable populations during future booster campaigns. MethodsTo address this need, we conducted a phase II clinical trial evaluating the safety and immunogenicity of the AVX/COVID-12 "Patria" vaccine as a booster dose. The vaccine was administered through both intramuscular (IM) and intranasal (IN) routes to participants who had previously received severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines based on adenoviral technology, inactivated virus, or mRNA technology. The inclusion criterion involved individuals with initial anti-spike IgG titers below 1,200 U/mL, allowing observation of the booster effect induced by vaccination. ResultsImmunization with AVX/COVID-12 resulted in a significant (>2.5 times) increase in neutralizing antibodies against the original Wuhan strain and variants of concern (VOCs) such as Alpha, Beta, Delta, and Omicron (BA.2 and BA.5). This immune response was accompanied by cellular interferon-gamma (IFN-{gamma}) production, indicating a robust and multifaceted reaction. ConclusionsThe administration of AVX/COVID-12 as a booster dose, whether through IM or IN routes, was safe and well-tolerated. The vaccine extended immune responses not only against the original Wuhan-1 strain but also against various VOCs. Its ability to enhance preexisting immune responses suggests a potential contribution to expanding and sustaining herd immunity within the population.


Asunto(s)
Infecciones por Coronavirus , COVID-19 , Enfermedad de Newcastle
4.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.07.14.202887

RESUMEN

Within the last 30 years 3 coronaviruses, SARS-CoV, MERS-CoV and SARS-CoV-2, have evolved and adapted to cause disease and spread amongst the human population. From the three, SARS-CoV-2 has spread world-wide and to July 2020 it has been responsible for more than 11 million confirmed cases and over half a million deaths. In the absence of an effective treatment or vaccine, social distancing has been the most effective measure to control the pandemic. However it has become evident that as the virus spreads the only tool that will allow us to fully control it is an effective vaccine. There are currently more than 150 vaccine candidates in different stages of development using a variety of viral antigens, with the S protein being the most targeted antigen. Although some new experimental evidence suggests cross-reacting responses between coronaviruses are present in the population, it remains unknown whether potential shared antigens between different coronaviruses could provide cross-protection. Given that coronaviruses are emerging pathogens and continue to represent a threat to global health, the development of a SARS-Cov-2 vaccine that could provide universal protection against other coronaviruses should be pushed forward. Here we present a thorough review of reported B and T cell epitopes shared between SARS-CoV-2 and other relevant coronaviruses, in addition we used web-based tools to predict novel B and T cell epitopes that have not been reported before. Analysis of experimental evidence that is constantly emerging complemented with the findings of this study allow us support the hypothesis that cross-reactive responses, particularly those coming from T cells, might play a key role in controlling infection by SARS-CoV-2. We hope that with the evidence presented in this manuscript we provide arguments to encourage the study of cross-reactive responses in order to elucidate their role in immunity to SARS-CoV-2. Finally we expect our findings will aid targeted analysis of antigen-specific immune responses and guide future vaccine design aiming to develop a cross reactive effective vaccine against respiratory diseases caused by coronaviruses.


Asunto(s)
Enfermedades Respiratorias , Síndrome Respiratorio Agudo Grave
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA